The benefits of using multi-objectivization for mining pittsburgh partial classification rules in imbalanced and discrete data.
Resource URI: https://dblp.l3s.de/d2r/resource/publications/conf/gecco/JacquesTDJD13
Home
|
Example Publications
Property
Value
dcterms:
bibliographicCitation
<
http://dblp.uni-trier.de/rec/bibtex/conf/gecco/JacquesTDJD13
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Clarisse_Dhaenens
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/David_Delerue
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Julie_Jacques
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Julien_Taillard
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Laetitia_Jourdan
>
foaf:
homepage
<
http://dx.doi.org/doi.org%2F10.1145%2F2463372.2463432
>
foaf:
homepage
<
https://doi.org/10.1145/2463372.2463432
>
dc:
identifier
DBLP conf/gecco/JacquesTDJD13
(xsd:string)
dc:
identifier
DOI doi.org%2F10.1145%2F2463372.2463432
(xsd:string)
dcterms:
issued
2013
(xsd:gYear)
rdfs:
label
The benefits of using multi-objectivization for mining pittsburgh partial classification rules in imbalanced and discrete data.
(xsd:string)
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Clarisse_Dhaenens
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/David_Delerue
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Julie_Jacques
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Julien_Taillard
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Laetitia_Jourdan
>
swrc:
pages
543-550
(xsd:string)
dcterms:
partOf
<
https://dblp.l3s.de/d2r/resource/publications/conf/gecco/2013
>
owl:
sameAs
<
http://bibsonomy.org/uri/bibtexkey/conf/gecco/JacquesTDJD13/dblp
>
owl:
sameAs
<
http://dblp.rkbexplorer.com/id/conf/gecco/JacquesTDJD13
>
rdfs:
seeAlso
<
http://dblp.uni-trier.de/db/conf/gecco/gecco2013.html#JacquesTDJD13
>
rdfs:
seeAlso
<
https://doi.org/10.1145/2463372.2463432
>
swrc:
series
<
https://dblp.l3s.de/d2r/resource/conferences/gecco
>
dc:
title
The benefits of using multi-objectivization for mining pittsburgh partial classification rules in imbalanced and discrete data.
(xsd:string)
dc:
type
<
http://purl.org/dc/dcmitype/Text
>
rdf:
type
swrc:InProceedings
rdf:
type
foaf:Document