How good can polynomial interpolation on the sphere be?
Resource URI: https://dblp.l3s.de/d2r/resource/publications/journals/adcm/WomersleyS01
Home
|
Example Publications
Property
Value
dcterms:
bibliographicCitation
<
http://dblp.uni-trier.de/rec/bibtex/journals/adcm/WomersleyS01
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Ian_H._Sloan
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Robert_S._Womersley
>
foaf:
homepage
<
http://dx.doi.org/doi.org%2F10.1023%2FA%3A1016630227163
>
foaf:
homepage
<
https://doi.org/10.1023/A:1016630227163
>
dc:
identifier
DBLP journals/adcm/WomersleyS01
(xsd:string)
dc:
identifier
DOI doi.org%2F10.1023%2FA%3A1016630227163
(xsd:string)
dcterms:
issued
2001
(xsd:gYear)
swrc:
journal
<
https://dblp.l3s.de/d2r/resource/journals/adcm
>
rdfs:
label
How good can polynomial interpolation on the sphere be?
(xsd:string)
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Ian_H._Sloan
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Robert_S._Womersley
>
swrc:
number
3
(xsd:string)
swrc:
pages
195-226
(xsd:string)
owl:
sameAs
<
http://bibsonomy.org/uri/bibtexkey/journals/adcm/WomersleyS01/dblp
>
owl:
sameAs
<
http://dblp.rkbexplorer.com/id/journals/adcm/WomersleyS01
>
rdfs:
seeAlso
<
http://dblp.uni-trier.de/db/journals/adcm/adcm14.html#WomersleyS01
>
rdfs:
seeAlso
<
https://doi.org/10.1023/A:1016630227163
>
dc:
subject
interpolation on the sphere; uniform norm; spherical polynomials; distribution of points on the sphere; Lebesgue constant
(xsd:string)
dc:
title
How good can polynomial interpolation on the sphere be?
(xsd:string)
dc:
type
<
http://purl.org/dc/dcmitype/Text
>
rdf:
type
swrc:Article
rdf:
type
foaf:Document
swrc:
volume
14
(xsd:string)