[RDF data]
Home | Example Publications
PropertyValue
dcterms:bibliographicCitation <http://dblp.uni-trier.de/rec/bibtex/journals/cbm/KreimeyerDSMRBB21>
dc:creator <https://dblp.l3s.de/d2r/resource/authors/Gary_Rosner>
dc:creator <https://dblp.l3s.de/d2r/resource/authors/Jonathan_Spiker>
dc:creator <https://dblp.l3s.de/d2r/resource/authors/Kory_Kreimeyer>
dc:creator <https://dblp.l3s.de/d2r/resource/authors/Monica_A._Mu%E2%88%9A%C4%AAoz>
dc:creator <https://dblp.l3s.de/d2r/resource/authors/Oanh_Dang>
dc:creator <https://dblp.l3s.de/d2r/resource/authors/Robert_Ball>
dc:creator <https://dblp.l3s.de/d2r/resource/authors/Taxiarchis_Botsis>
foaf:homepage <http://dx.doi.org/doi.org%2F10.1016%2Fj.compbiomed.2021.104517>
foaf:homepage <https://doi.org/10.1016/j.compbiomed.2021.104517>
dc:identifier DBLP journals/cbm/KreimeyerDSMRBB21 (xsd:string)
dc:identifier DOI doi.org%2F10.1016%2Fj.compbiomed.2021.104517 (xsd:string)
dcterms:issued 2021 (xsd:gYear)
swrc:journal <https://dblp.l3s.de/d2r/resource/journals/cbm>
rdfs:label Feature engineering and machine learning for causality assessment in pharmacovigilance: Lessons learned from application to the FDA Adverse Event Reporting System. (xsd:string)
foaf:maker <https://dblp.l3s.de/d2r/resource/authors/Gary_Rosner>
foaf:maker <https://dblp.l3s.de/d2r/resource/authors/Jonathan_Spiker>
foaf:maker <https://dblp.l3s.de/d2r/resource/authors/Kory_Kreimeyer>
foaf:maker <https://dblp.l3s.de/d2r/resource/authors/Monica_A._Mu%E2%88%9A%C4%AAoz>
foaf:maker <https://dblp.l3s.de/d2r/resource/authors/Oanh_Dang>
foaf:maker <https://dblp.l3s.de/d2r/resource/authors/Robert_Ball>
foaf:maker <https://dblp.l3s.de/d2r/resource/authors/Taxiarchis_Botsis>
swrc:pages 104517 (xsd:string)
owl:sameAs <http://bibsonomy.org/uri/bibtexkey/journals/cbm/KreimeyerDSMRBB21/dblp>
owl:sameAs <http://dblp.rkbexplorer.com/id/journals/cbm/KreimeyerDSMRBB21>
rdfs:seeAlso <http://dblp.uni-trier.de/db/journals/cbm/cbm135.html#KreimeyerDSMRBB21>
rdfs:seeAlso <https://doi.org/10.1016/j.compbiomed.2021.104517>
dc:title Feature engineering and machine learning for causality assessment in pharmacovigilance: Lessons learned from application to the FDA Adverse Event Reporting System. (xsd:string)
dc:type <http://purl.org/dc/dcmitype/Text>
rdf:type swrc:Article
rdf:type foaf:Document
swrc:volume 135 (xsd:string)