[RDF data]
Home | Example Publications
PropertyValue
dcterms:bibliographicCitation <http://dblp.uni-trier.de/rec/bibtex/journals/eaai/BakerJAGACS23>
dc:creator <https://dblp.l3s.de/d2r/resource/authors/Ahmed_Ghareeb>
dc:creator <https://dblp.l3s.de/d2r/resource/authors/Hessein_Ali>
dc:creator <https://dblp.l3s.de/d2r/resource/authors/Hussein_Al-bayaty>
dc:creator <https://dblp.l3s.de/d2r/resource/authors/Jun-Ki_Choi>
dc:creator <https://dblp.l3s.de/d2r/resource/authors/Kamal_H._Jihad>
dc:creator <https://dblp.l3s.de/d2r/resource/authors/Mohammed_Rashad_Baker>
dc:creator <https://dblp.l3s.de/d2r/resource/authors/Qiancheng_Sun>
foaf:homepage <http://dx.doi.org/doi.org%2F10.1016%2Fj.engappai.2023.106350>
foaf:homepage <https://doi.org/10.1016/j.engappai.2023.106350>
dc:identifier DBLP journals/eaai/BakerJAGACS23 (xsd:string)
dc:identifier DOI doi.org%2F10.1016%2Fj.engappai.2023.106350 (xsd:string)
dcterms:issued 2023 (xsd:gYear)
swrc:journal <https://dblp.l3s.de/d2r/resource/journals/eaai>
rdfs:label Uncertainty management in electricity demand forecasting with machine learning and ensemble learning: Case studies of COVID-19 in the US metropolitans. (xsd:string)
foaf:maker <https://dblp.l3s.de/d2r/resource/authors/Ahmed_Ghareeb>
foaf:maker <https://dblp.l3s.de/d2r/resource/authors/Hessein_Ali>
foaf:maker <https://dblp.l3s.de/d2r/resource/authors/Hussein_Al-bayaty>
foaf:maker <https://dblp.l3s.de/d2r/resource/authors/Jun-Ki_Choi>
foaf:maker <https://dblp.l3s.de/d2r/resource/authors/Kamal_H._Jihad>
foaf:maker <https://dblp.l3s.de/d2r/resource/authors/Mohammed_Rashad_Baker>
foaf:maker <https://dblp.l3s.de/d2r/resource/authors/Qiancheng_Sun>
swrc:number Part B (xsd:string)
swrc:pages 106350 (xsd:string)
owl:sameAs <http://bibsonomy.org/uri/bibtexkey/journals/eaai/BakerJAGACS23/dblp>
owl:sameAs <http://dblp.rkbexplorer.com/id/journals/eaai/BakerJAGACS23>
rdfs:seeAlso <http://dblp.uni-trier.de/db/journals/eaai/eaai123.html#BakerJAGACS23>
rdfs:seeAlso <https://doi.org/10.1016/j.engappai.2023.106350>
dc:title Uncertainty management in electricity demand forecasting with machine learning and ensemble learning: Case studies of COVID-19 in the US metropolitans. (xsd:string)
dc:type <http://purl.org/dc/dcmitype/Text>
rdf:type swrc:Article
rdf:type foaf:Document
swrc:volume 123 (xsd:string)