A machine-learning approach to synthesize virtual sensors for parameter-varying systems.
Resource URI: https://dblp.l3s.de/d2r/resource/publications/journals/ejcon/MastiBB21
Home
|
Example Publications
Property
Value
dcterms:
bibliographicCitation
<
http://dblp.uni-trier.de/rec/bibtex/journals/ejcon/MastiBB21
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Alberto_Bemporad
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Daniele_Bernardini_0001
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Daniele_Masti
>
foaf:
homepage
<
http://dx.doi.org/doi.org%2F10.1016%2Fj.ejcon.2021.06.005
>
foaf:
homepage
<
https://doi.org/10.1016/j.ejcon.2021.06.005
>
dc:
identifier
DBLP journals/ejcon/MastiBB21
(xsd:string)
dc:
identifier
DOI doi.org%2F10.1016%2Fj.ejcon.2021.06.005
(xsd:string)
dcterms:
issued
2021
(xsd:gYear)
swrc:
journal
<
https://dblp.l3s.de/d2r/resource/journals/ejcon
>
rdfs:
label
A machine-learning approach to synthesize virtual sensors for parameter-varying systems.
(xsd:string)
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Alberto_Bemporad
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Daniele_Bernardini_0001
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Daniele_Masti
>
swrc:
pages
40-49
(xsd:string)
owl:
sameAs
<
http://bibsonomy.org/uri/bibtexkey/journals/ejcon/MastiBB21/dblp
>
owl:
sameAs
<
http://dblp.rkbexplorer.com/id/journals/ejcon/MastiBB21
>
rdfs:
seeAlso
<
http://dblp.uni-trier.de/db/journals/ejcon/ejcon61.html#MastiBB21
>
rdfs:
seeAlso
<
https://doi.org/10.1016/j.ejcon.2021.06.005
>
dc:
title
A machine-learning approach to synthesize virtual sensors for parameter-varying systems.
(xsd:string)
dc:
type
<
http://purl.org/dc/dcmitype/Text
>
rdf:
type
swrc:Article
rdf:
type
foaf:Document
swrc:
volume
61
(xsd:string)