Gradient Boosted Machine Learning Model to Predict H2, CH4, and CO2 Uptake in Metal-Organic Frameworks Using Experimental Data.
Resource URI: https://dblp.l3s.de/d2r/resource/publications/journals/jcisd/BaileyJBWHM23
Home
|
Example Publications
Property
Value
dcterms:
bibliographicCitation
<
http://dblp.uni-trier.de/rec/bibtex/journals/jcisd/BaileyJBWHM23
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Adam_Jackson
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Elaine_B._Martin
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Kejun_Wu
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Nicole_Hondow
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Razvan-Antonio_Berbece
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Tom_Bailey
>
foaf:
homepage
<
http://dx.doi.org/doi.org%2F10.1021%2Facs.jcim.3c00135
>
foaf:
homepage
<
https://doi.org/10.1021/acs.jcim.3c00135
>
dc:
identifier
DBLP journals/jcisd/BaileyJBWHM23
(xsd:string)
dc:
identifier
DOI doi.org%2F10.1021%2Facs.jcim.3c00135
(xsd:string)
dcterms:
issued
2023
(xsd:gYear)
swrc:
journal
<
https://dblp.l3s.de/d2r/resource/journals/jcisd
>
rdfs:
label
Gradient Boosted Machine Learning Model to Predict H2, CH4, and CO2 Uptake in Metal-Organic Frameworks Using Experimental Data.
(xsd:string)
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Adam_Jackson
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Elaine_B._Martin
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Kejun_Wu
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Nicole_Hondow
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Razvan-Antonio_Berbece
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Tom_Bailey
>
swrc:
month
August
(xsd:string)
swrc:
number
15
(xsd:string)
swrc:
pages
4545-4551
(xsd:string)
owl:
sameAs
<
http://bibsonomy.org/uri/bibtexkey/journals/jcisd/BaileyJBWHM23/dblp
>
owl:
sameAs
<
http://dblp.rkbexplorer.com/id/journals/jcisd/BaileyJBWHM23
>
rdfs:
seeAlso
<
http://dblp.uni-trier.de/db/journals/jcisd/jcisd63.html#BaileyJBWHM23
>
rdfs:
seeAlso
<
https://doi.org/10.1021/acs.jcim.3c00135
>
dc:
title
Gradient Boosted Machine Learning Model to Predict H2, CH4, and CO2 Uptake in Metal-Organic Frameworks Using Experimental Data.
(xsd:string)
dc:
type
<
http://purl.org/dc/dcmitype/Text
>
rdf:
type
swrc:Article
rdf:
type
foaf:Document
swrc:
volume
63
(xsd:string)