Predicting Energetics Materials' Crystalline Density from Chemical Structure by Machine Learning.
Resource URI: https://dblp.l3s.de/d2r/resource/publications/journals/jcisd/NguyenLKKHH21
Home
|
Example Publications
Property
Value
dcterms:
bibliographicCitation
<
http://dblp.uni-trier.de/rec/bibtex/journals/jcisd/NguyenLKKHH21
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Anna_M._Hiszpanski
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Donald_Loveland
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Joanne_Taery_Kim
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Phan_Nguyen
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Piyush_Karande
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Thomas_Yong-Jin_Han
>
foaf:
homepage
<
http://dx.doi.org/doi.org%2F10.1021%2Facs.jcim.0c01318
>
foaf:
homepage
<
https://doi.org/10.1021/acs.jcim.0c01318
>
dc:
identifier
DBLP journals/jcisd/NguyenLKKHH21
(xsd:string)
dc:
identifier
DOI doi.org%2F10.1021%2Facs.jcim.0c01318
(xsd:string)
dcterms:
issued
2021
(xsd:gYear)
swrc:
journal
<
https://dblp.l3s.de/d2r/resource/journals/jcisd
>
rdfs:
label
Predicting Energetics Materials' Crystalline Density from Chemical Structure by Machine Learning.
(xsd:string)
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Anna_M._Hiszpanski
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Donald_Loveland
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Joanne_Taery_Kim
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Phan_Nguyen
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Piyush_Karande
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Thomas_Yong-Jin_Han
>
swrc:
number
5
(xsd:string)
swrc:
pages
2147-2158
(xsd:string)
owl:
sameAs
<
http://bibsonomy.org/uri/bibtexkey/journals/jcisd/NguyenLKKHH21/dblp
>
owl:
sameAs
<
http://dblp.rkbexplorer.com/id/journals/jcisd/NguyenLKKHH21
>
rdfs:
seeAlso
<
http://dblp.uni-trier.de/db/journals/jcisd/jcisd61.html#NguyenLKKHH21
>
rdfs:
seeAlso
<
https://doi.org/10.1021/acs.jcim.0c01318
>
dc:
title
Predicting Energetics Materials' Crystalline Density from Chemical Structure by Machine Learning.
(xsd:string)
dc:
type
<
http://purl.org/dc/dcmitype/Text
>
rdf:
type
swrc:Article
rdf:
type
foaf:Document
swrc:
volume
61
(xsd:string)