[RDF data]
Home | Example Publications
PropertyValue
dcterms:bibliographicCitation <http://dblp.uni-trier.de/rec/bibtex/journals/na/IshtevaLAH09>
dc:creator <https://dblp.l3s.de/d2r/resource/authors/Lieven_De_Lathauwer>
dc:creator <https://dblp.l3s.de/d2r/resource/authors/Mariya_Ishteva>
dc:creator <https://dblp.l3s.de/d2r/resource/authors/Pierre-Antoine_Absil>
dc:creator <https://dblp.l3s.de/d2r/resource/authors/Sabine_Van_Huffel>
foaf:homepage <http://dx.doi.org/doi.org%2F10.1007%2Fs11075-008-9251-2>
foaf:homepage <https://doi.org/10.1007/s11075-008-9251-2>
dc:identifier DBLP journals/na/IshtevaLAH09 (xsd:string)
dc:identifier DOI doi.org%2F10.1007%2Fs11075-008-9251-2 (xsd:string)
dcterms:issued 2009 (xsd:gYear)
swrc:journal <https://dblp.l3s.de/d2r/resource/journals/na>
rdfs:label Differential-geometric Newton method for the best rank-(R1, R2, R3) approximation of tensors. (xsd:string)
foaf:maker <https://dblp.l3s.de/d2r/resource/authors/Lieven_De_Lathauwer>
foaf:maker <https://dblp.l3s.de/d2r/resource/authors/Mariya_Ishteva>
foaf:maker <https://dblp.l3s.de/d2r/resource/authors/Pierre-Antoine_Absil>
foaf:maker <https://dblp.l3s.de/d2r/resource/authors/Sabine_Van_Huffel>
swrc:number 2 (xsd:string)
swrc:pages 179-194 (xsd:string)
owl:sameAs <http://bibsonomy.org/uri/bibtexkey/journals/na/IshtevaLAH09/dblp>
owl:sameAs <http://dblp.rkbexplorer.com/id/journals/na/IshtevaLAH09>
rdfs:seeAlso <http://dblp.uni-trier.de/db/journals/na/na51.html#IshtevaLAH09>
rdfs:seeAlso <https://doi.org/10.1007/s11075-008-9251-2>
dc:subject Multilinear algebra; Higher-order tensor; Higher-order singular value decomposition; Rank-(R 1, R 2, R 3) reduction; Quotient manifold; Differential-geometric optimization; Newton’s method; Tucker compression (xsd:string)
dc:title Differential-geometric Newton method for the best rank-(R1, R2, R3) approximation of tensors. (xsd:string)
dc:type <http://purl.org/dc/dcmitype/Text>
rdf:type swrc:Article
rdf:type foaf:Document
swrc:volume 51 (xsd:string)