Studying the Robustness of Anti-Adversarial Federated Learning Models Detecting Cyberattacks in IoT Spectrum Sensors.
Resource URI: https://dblp.l3s.de/d2r/resource/publications/journals/tdsc/SanchezCSIBPS24
Home
|
Example Publications
Property
Value
dcterms:
bibliographicCitation
<
http://dblp.uni-trier.de/rec/bibtex/journals/tdsc/SanchezCSIBPS24
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Adrian_Lars_Benjamin_Iten
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Alberto_Huertas_Celdr%E2%88%9A%C2%B0n
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Burkhard_Stiller
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/G%E2%88%9A%C2%A9r%E2%88%9A%C4%ABme_Bovet
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Gregorio_Mart%E2%88%9A%E2%89%A0nez_P%E2%88%9A%C2%A9rez
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Pedro_Miguel_S%E2%88%9A%C2%B0nchez_S%E2%88%9A%C2%B0nchez
>
dc:
creator
<
https://dblp.l3s.de/d2r/resource/authors/Timo_Schenk
>
foaf:
homepage
<
http://dx.doi.org/doi.org%2F10.1109%2FTDSC.2022.3204535
>
foaf:
homepage
<
https://doi.org/10.1109/TDSC.2022.3204535
>
dc:
identifier
DBLP journals/tdsc/SanchezCSIBPS24
(xsd:string)
dc:
identifier
DOI doi.org%2F10.1109%2FTDSC.2022.3204535
(xsd:string)
dcterms:
issued
2024
(xsd:gYear)
swrc:
journal
<
https://dblp.l3s.de/d2r/resource/journals/tdsc
>
rdfs:
label
Studying the Robustness of Anti-Adversarial Federated Learning Models Detecting Cyberattacks in IoT Spectrum Sensors.
(xsd:string)
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Adrian_Lars_Benjamin_Iten
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Alberto_Huertas_Celdr%E2%88%9A%C2%B0n
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Burkhard_Stiller
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/G%E2%88%9A%C2%A9r%E2%88%9A%C4%ABme_Bovet
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Gregorio_Mart%E2%88%9A%E2%89%A0nez_P%E2%88%9A%C2%A9rez
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Pedro_Miguel_S%E2%88%9A%C2%B0nchez_S%E2%88%9A%C2%B0nchez
>
foaf:
maker
<
https://dblp.l3s.de/d2r/resource/authors/Timo_Schenk
>
swrc:
month
March - April
(xsd:string)
swrc:
number
2
(xsd:string)
swrc:
pages
573-584
(xsd:string)
owl:
sameAs
<
http://bibsonomy.org/uri/bibtexkey/journals/tdsc/SanchezCSIBPS24/dblp
>
owl:
sameAs
<
http://dblp.rkbexplorer.com/id/journals/tdsc/SanchezCSIBPS24
>
rdfs:
seeAlso
<
http://dblp.uni-trier.de/db/journals/tdsc/tdsc21.html#SanchezCSIBPS24
>
rdfs:
seeAlso
<
https://doi.org/10.1109/TDSC.2022.3204535
>
dc:
title
Studying the Robustness of Anti-Adversarial Federated Learning Models Detecting Cyberattacks in IoT Spectrum Sensors.
(xsd:string)
dc:
type
<
http://purl.org/dc/dcmitype/Text
>
rdf:
type
swrc:Article
rdf:
type
foaf:Document
swrc:
volume
21
(xsd:string)