|
|
Venues (Conferences, Journals, ...)
|
|
GrowBag graphs for keyword ? (Num. hits/coverage)
Group by:
The graphs summarize 40 occurrences of 15 keywords
|
|
|
Results
Found 38 publication records. Showing 38 according to the selection in the facets
Hits ?▲ |
Authors |
Title |
Venue |
Year |
Link |
Author keywords |
266 | Jeff Clune, Benjamin E. Beckmann, Philip K. McKinley, Charles Ofria |
Investigating whether hyperNEAT produces modular neural networks.  |
GECCO  |
2010 |
DBLP DOI BibTeX RDF |
developmental encodings, generative encodings, artificial neural networks, modularity, neuroevolution, neat, indirect encodings, hyperneat |
195 | Sebastian Risi, Joel Lehman, Kenneth O. Stanley |
Evolving the placement and density of neurons in the hyperneat substrate.  |
GECCO  |
2010 |
DBLP DOI BibTeX RDF |
substrate evolution, neuroevolution, neat, hyperneat |
195 | Jeff Clune, Charles Ofria, Robert T. Pennock |
The sensitivity of HyperNEAT to different geometric representations of a problem.  |
GECCO  |
2009 |
DBLP DOI BibTeX RDF |
developmental encoding, generative encoding, artificial neural networks, geometry, neuroevolution, neat, indirect encoding, hyperneat |
56 | Matthew J. Hausknecht, Piyush Khandelwal, Risto Miikkulainen, Peter Stone |
HyperNEAT-GGP: a hyperNEAT-based atari general game player.  |
GECCO  |
2012 |
DBLP DOI BibTeX RDF |
|
52 | Jan Drchal, Ondrej Kapral, Jan Koutník, Miroslav Snorek |
Combining Multiple Inputs in HyperNEAT Mobile Agent Controller.  |
ICANN (2)  |
2009 |
DBLP DOI BibTeX RDF |
|
50 | David B. D'Ambrosio, Kenneth O. Stanley |
Generative encoding for multiagent learning.  |
GECCO  |
2008 |
DBLP DOI BibTeX RDF |
CPPNs, neural networks, multiagent systems, NEAT, HyperNEAT |
50 | Jason Gauci, Kenneth O. Stanley |
Generating large-scale neural networks through discovering geometric regularities.  |
GECCO  |
2007 |
DBLP DOI BibTeX RDF |
compositional pattern producing networks, large-scale artificial neural networks, NEAT, HyperNEAT |
50 | David B. D'Ambrosio, Kenneth O. Stanley |
A novel generative encoding for exploiting neural network sensor and output geometry.  |
GECCO  |
2007 |
DBLP DOI BibTeX RDF |
compositional pattern producing networks, large-scale artifical neural networks, NEAT, HyperNEAT |
47 | Phillip Verbancsics, Kenneth O. Stanley |
Transfer learning through indirect encoding.  |
GECCO  |
2010 |
DBLP DOI BibTeX RDF |
artifical neural networks, robocup soccer, task transfer, generative and developmental systems |
28 | Amund Tenstad, Pauline C. Haddow |
DES-HyperNEAT: Towards Multiple Substrate Deep ANNs.  |
CEC  |
2021 |
DBLP DOI BibTeX RDF |
|
28 | Francesco Calimeri, Aldo Marzullo, Claudio Stamile, Giorgio Terracina |
Blood Vessel Segmentation in Retinal Fundus Images Using Hypercube NeuroEvolution of Augmenting Topologies (HyperNEAT).  |
Quantifying and Processing Biomedical and Behavioral Signals  |
2019 |
DBLP DOI BibTeX RDF |
|
28 | Andrés N. Vargas González, Seng Lee Koh, Gustavo I. Cali Mena, Shreyas Somashekara, Joseph J. LaViola |
Shoot-Out: Exploring HyperNEAT for an optimal Final-Third Approach in Robocup-2D Soccer.  |
LA-CCI  |
2019 |
DBLP DOI BibTeX RDF |
|
28 | Collin Cappelle, Josh C. Bongard |
Embodied Embeddings for Hyperneat.  |
ALIFE  |
2018 |
DBLP DOI BibTeX RDF |
|
28 | Jakob Merrild, Mikkel Angaju Rasmussen, Sebastian Risi |
HyperNTM: Evolving Scalable Neural Turing Machines Through HyperNEAT.  |
EvoApplications  |
2018 |
DBLP DOI BibTeX RDF |
|
28 | Jakob Merrild, Mikkel Angaju Rasmussen, Sebastian Risi |
HyperENTM: Evolving Scalable Neural Turing Machines through HyperNEAT.  |
CoRR  |
2017 |
DBLP BibTeX RDF |
|
28 | Maxim Sokolov, Ilya Afanasyev 0001, Alexandr Klimchik, Nikolaos Mavridis |
HyperNEAT-based flipper control for a crawler robot motion in 3D simulation environment.  |
ROBIO  |
2017 |
DBLP DOI BibTeX RDF |
|
28 | Oscar A. Silva, Pascal Sigel, María-José Escobar |
Time delays in a HyperNEAT network to improve gait learning for legged robots.  |
IJCNN  |
2017 |
DBLP DOI BibTeX RDF |
|
28 | Ben P. Jolley, Alastair Channon |
Toward evolving robust, deliberate motion planning with HyperNEAT.  |
SSCI  |
2017 |
DBLP DOI BibTeX RDF |
|
28 | Jacob Schrum, Joel Lehman, Sebastian Risi |
Automatic Evolution of Multimodal Behavior with Multi-Brain HyperNEAT.  |
GECCO (Companion)  |
2016 |
DBLP DOI BibTeX RDF |
|
28 | John Reeder |
Team Search Tactics Through Multi-Agent HyperNEAT.  |
IPCAT  |
2015 |
DBLP DOI BibTeX RDF |
|
28 | Phillip Verbancsics, Josh Harguess |
Feature Learning HyperNEAT: Evolving Neural Networks to Extract Features for Classification of Maritime Satellite Imagery.  |
IPCAT  |
2015 |
DBLP DOI BibTeX RDF |
|
28 | Phillip Verbancsics, Josh Harguess |
Classifying Maritime Vessels from Satellite Imagery with HyperNEAT.  |
GECCO (Companion)  |
2015 |
DBLP DOI BibTeX RDF |
|
28 | David B. D'Ambrosio, Jason Gauci, Kenneth O. Stanley |
HyperNEAT: The First Five Years.  |
Growing Adaptive Machines  |
2014 |
DBLP DOI BibTeX RDF |
|
28 | Massimiliano D'Angelo, Berend Weel, A. E. Eiben |
HyperNEAT Versus RL PoWER for Online Gait Learning in Modular Robots.  |
EvoApplications  |
2014 |
DBLP DOI BibTeX RDF |
|
28 | Joost Huizinga, Jeff Clune, Jean-Baptiste Mouret |
Evolving neural networks that are both modular and regular: HyperNEAT plus the connection cost technique.  |
GECCO  |
2014 |
DBLP DOI BibTeX RDF |
|
28 | Suchan Lee, Jason Yosinski, Kyrre Glette, Hod Lipson, Jeff Clune |
Evolving Gaits for Physical Robots with the HyperNEAT Generative Encoding: The Benefits of Simulation.  |
EvoApplications  |
2013 |
DBLP DOI BibTeX RDF |
|
28 | Justin K. Pugh, Kenneth O. Stanley |
Evolving multimodal controllers with HyperNEAT.  |
GECCO  |
2013 |
DBLP DOI BibTeX RDF |
|
28 | Thomas G. van den Berg, Shimon Whiteson |
Critical factors in the performance of hyperNEAT.  |
GECCO  |
2013 |
DBLP DOI BibTeX RDF |
|
28 | Jason Yosinski, Jeff Clune, Diana Hidalgo, Sarah Nguyen, Juan Cristóbal Zagal, Hod Lipson |
Evolving robot gaits in hardware: the HyperNEAT generative encoding vs. parameter optimization.  |
ECAL  |
2011 |
DBLP BibTeX RDF |
|
28 | Sebastian Risi, Kenneth O. Stanley |
Enhancing es-hyperneat to evolve more complex regular neural networks.  |
GECCO  |
2011 |
DBLP DOI BibTeX RDF |
|
28 | Phillip Verbancsics, Kenneth O. Stanley |
Constraining connectivity to encourage modularity in HyperNEAT.  |
GECCO  |
2011 |
DBLP DOI BibTeX RDF |
|
28 | Jessica Lowell, Sergey Grabkovsky, Kir Birger |
Comparison of NEAT and HyperNEAT Performance on a Strategic Decision-Making Problem.  |
ICGEC  |
2011 |
DBLP DOI BibTeX RDF |
genetic algorithms, machine learning, neuroevolution, algorithm performance |
28 | Evert Haasdijk, Andrei A. Rusu, A. E. Eiben |
HyperNEAT for Locomotion Control in Modular Robots.  |
ICES  |
2010 |
DBLP DOI BibTeX RDF |
|
28 | Jan Drchal, Jan Koutník, Miroslav Snorek |
HyperNEAT controlled robots learn how to drive on roads in simulated environment.  |
IEEE Congress on Evolutionary Computation  |
2009 |
DBLP DOI BibTeX RDF |
|
28 | Jeff Clune, Benjamin E. Beckmann, Charles Ofria, Robert T. Pennock |
Evolving coordinated quadruped gaits with the HyperNEAT generative encoding.  |
IEEE Congress on Evolutionary Computation  |
2009 |
DBLP DOI BibTeX RDF |
|
28 | Zdenek Buk, Jan Koutník, Miroslav Snorek |
NEAT in HyperNEAT Substituted with Genetic Programming.  |
ICANNGA  |
2009 |
DBLP DOI BibTeX RDF |
|
26 | Jeff Clune, Charles Ofria, Robert T. Pennock |
How a Generative Encoding Fares as Problem-Regularity Decreases.  |
PPSN  |
2008 |
DBLP DOI BibTeX RDF |
ANN, modularity, Evolution, regularity, NEAT, HyperNEAT |
26 | Jeff Clune, Charles Ofria, Robert T. Pennock |
How generative encodings fare on less regular problems.  |
GECCO  |
2008 |
DBLP DOI BibTeX RDF |
ANN, modularity, evolution, regularity, NEAT, HyperNEAT |
Displaying result #1 - #38 of 38 (100 per page; Change: )
|
|