|
|
Venues (Conferences, Journals, ...)
|
|
GrowBag graphs for keyword ? (Num. hits/coverage)
Group by:
The graphs summarize 3 occurrences of 3 keywords
|
|
|
Results
Found 26 publication records. Showing 26 according to the selection in the facets
Hits ?▲ |
Authors |
Title |
Venue |
Year |
Link |
Author keywords |
53 | Helmut Plünnecke |
K-density, N-density and finiteness properties. |
European Workshop on Applications and Theory in Petri Nets |
1984 |
DBLP DOI BibTeX RDF |
|
33 | Teena Carroll, Gyula O. H. Katona |
Bounds on Maximal Families of Sets Not Containing Three Sets with A INTERSECTION B SUBSET OF C , A NOT A SUBSET OF B. |
Order |
2008 |
DBLP DOI BibTeX RDF |
Extremal problem for families, Sperner type theorem, Forbidden subposet |
33 | Alfonz Haviar, Judita Lihová |
Varieties of Posets. |
Order |
2005 |
DBLP DOI BibTeX RDF |
congruence relation, inf-set, l-subposet, sup-set, homomorphism, poset, variety |
30 | Dániel Gerbner, Dániel T. Nagy, Balázs Patkós, Máté Vizer |
Forbidden subposet problems in the grid. |
Discret. Math. |
2022 |
DBLP DOI BibTeX RDF |
|
30 | Dániel Gerbner, Dániel T. Nagy, Balázs Patkós, Máté Vizer |
Supersaturation, Counting, and Randomness in Forbidden Subposet Problems. |
Electron. J. Comb. |
2021 |
DBLP DOI BibTeX RDF |
|
30 | Ryan R. Martin, Abhishek Methuku, Andrew J. Uzzell, Shanise Walker |
A Simple Proof for a Forbidden Subposet Problem. |
Electron. J. Comb. |
2020 |
DBLP DOI BibTeX RDF |
|
30 | Dániel Gerbner, Balázs Keszegh, Balázs Patkós |
Generalized Forbidden Subposet Problems. |
Order |
2020 |
DBLP DOI BibTeX RDF |
|
30 | Dániel Gerbner, Balázs Patkós, Máté Vizer |
Forbidden Subposet Problems for Traces of Set Families. |
Electron. J. Comb. |
2018 |
DBLP DOI BibTeX RDF |
|
30 | Dániel T. Nagy |
Forbidden subposet problems with size restrictions. |
J. Comb. Theory, Ser. A |
2018 |
DBLP DOI BibTeX RDF |
|
30 | Dániel Grósz, Abhishek Methuku, Casey Tompkins |
An Improvement of the General Bound on the Largest Family of Subsets Avoiding a Subposet. |
Order |
2017 |
DBLP DOI BibTeX RDF |
|
30 | Abhishek Methuku, Dömötör Pálvölgyi |
Forbidden Hypermatrices Imply General Bounds on Induced Forbidden Subposet Problems. |
Comb. Probab. Comput. |
2017 |
DBLP DOI BibTeX RDF |
|
30 | Balázs Patkós |
Induced and Non-induced Forbidden Subposet Problems. |
Electron. J. Comb. |
2015 |
DBLP DOI BibTeX RDF |
|
30 | Abhishek Methuku, Casey Tompkins |
Exact Forbidden Subposet Results using Chain Decompositions of the Cycle. |
Electron. J. Comb. |
2015 |
DBLP DOI BibTeX RDF |
|
30 | Balázs Patkós |
Supersaturation and stability for forbidden subposet problems. |
J. Comb. Theory, Ser. A |
2015 |
DBLP DOI BibTeX RDF |
|
30 | Sebastian A. Csar, Rik Sengupta, Warut Suksompong |
On a Subposet of the Tamari Lattice. |
Order |
2014 |
DBLP DOI BibTeX RDF |
|
30 | Edward Boehnlein, Tao Jiang 0003 |
Set Families With a Forbidden Induced Subposet. |
Comb. Probab. Comput. |
2012 |
DBLP DOI BibTeX RDF |
|
30 | Bill Sands, Jia Shen |
When Will Every Maximal F-free Subposet Contain a Maximal Element? |
Order |
2010 |
DBLP DOI BibTeX RDF |
|
30 | Boris Bukh |
Set Families with a Forbidden Subposet. |
Electron. J. Comb. |
2009 |
DBLP DOI BibTeX RDF |
|
30 | Jerrold R. Griggs, Linyuan Lu |
On Families of Subsets With a Forbidden Subposet. |
Comb. Probab. Comput. |
2009 |
DBLP DOI BibTeX RDF |
|
30 | Graham R. Brightwell |
Events correlated with respect to every subposet of a fixed poset. |
Graphs Comb. |
1990 |
DBLP DOI BibTeX RDF |
|
30 | Neil J. Ross |
Remarks on the Mobius function of a subposet. |
Discret. Math. |
1989 |
DBLP DOI BibTeX RDF |
|
30 | Paul H. Edelman, Paul Klingsberg |
The Subposet Lattice and the Order Polynomial. |
Eur. J. Comb. |
1982 |
DBLP DOI BibTeX RDF |
|
30 | William T. Trotter |
A Forbidden Subposet Characterization of an Order-Dimension Inequality. |
Math. Syst. Theory |
1976 |
DBLP DOI BibTeX RDF |
|
26 | Axel Hultman |
Fixed Points of Zircon Automorphisms. |
Order |
2008 |
DBLP DOI BibTeX RDF |
Zircon, Special matching, Poset automorphism |
26 | David M. Howard 0002, Mitchel T. Keller, Stephen J. Young |
A Characterization of Partially Ordered Sets with Linear Discrepancy Equal to 2. |
Order |
2007 |
DBLP DOI BibTeX RDF |
Mathematics Subject Classification (2000) 06A07 |
26 | Michelle L. Wachs |
Obstructions to Shellability. |
Discret. Comput. Geom. |
1999 |
DBLP DOI BibTeX RDF |
|
Displaying result #1 - #26 of 26 (100 per page; Change: )
|
|